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ABSTRACT 

In this paper, bispectral analysis of vibration signals is used to assess health conditions of different rotating-

components in an AH-64D helicopter tail rotor drive train. First, cross-bispectral analysis is used to investigate 

drive-shaft faulted conditions -- namely misalignment, imbalance, and a combination of misalignment and 

imbalance -- with respect to a baseline case. The magnitude of the cross-bispectrum shows high sensitivity to 

abnormalities in the drive shaft, and phase information can be used to distinguish between different shaft conditions. 

Auto-bispectral analysis is used to study vibration signals collected from a faulted hanger bearing with simultaneous 

drive shaft misalignment and imbalance. In the presence of drive-shaft faults, shaft harmonics dominate the power 

spectrum of the vibration signals, making it hard to detect the bearing’s fault using only the power spectrum. 

Application of bispectral analysis provides information about the fault’s characteristic frequency and relates spectral 

contents in the vibration to their physical root causes. 

 

INTRODUCTION  

 Over the past decade, great advancements have been 

made in the field of Condition-Based Maintenance (CBM) 

for aircraft systems [1]-[3].  The successes to date in 

implementing CBM practices on military helicopters have 

resulted in the large-scale deployment of Health and Usage 

Monitoring Systems (HUMS), which have generated a 

number of benefits ranging from an increased sense of safety 

to reduced maintenance costs [4]-[6]. To avoid unexpected 

failure of critical rotorcraft components, on-board HUMS 

devices continuously collect and process a variety of time-

varying waveforms to assess the health conditions of a 

component. Nevertheless, vibration signals are the most 

common waveform data used in the condition monitoring of 

rotating and reciprocating machineries [7].  Collected 

vibration data are analyzed using different signal processing 

techniques to extract features that are used to diagnose the 

current condition of a component, or to estimate its 

remaining useful life using prognostic models. 

Power spectral analysis is the most common technique 

used in the field of vibration monitoring [8]. The power 

spectrum describes how the mean square power in a signal is 

distributed over the frequency. A faulted mechanical 

component can be detected and isolated when high vibration 
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energy is observed around the characterizing frequency of 

that component.   

However, power spectral analysis has limited 

performance in describing frequency correlations higher 

than the second order [9]. The power spectrum is the Fourier 

transform of the well-known correlation function (second-

order moment of the signal) as described by Wiener-

Khinchin theorem [10]. Studying higher-order correlation 

functions and their corresponding spectra could provide 

more information about the mechanical system, which in 

turn could help in building more accurate diagnostic models. 

This information comes with no additional cost in terms of 

adding more hardware (sensors, wiring, etc.), since further 

processing of the same collected vibration data is all that is 

needed. For example, when two faults produce similar 

characterizing power spectra, such as the case of shaft 

misalignment and imbalance, further processing of the same 

vibration data will result in a proper diagnosis of the faults. 

Another example is when two faults with different 

characterizing frequencies occur simultaneously such that 

one fault frequency dominates the power spectrum and 

masks that of the other fault.  

The bispectrum is the Fourier transform of the 

bicorrelation function (third-order moment), as will be 

discussed in the following section. It is a very useful tool for 

investigating quadratic coupling between spectral 

components [11]. When the system under study has some 

form of quadratic nonlinearity, various frequency 

components tend to interact with one another. This 

frequency mix produces new spectral components which are 

phase-coupled to the permanent interacting ones. The 
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bispectrum describes the correlation between the source and 

the result of quadratic-frequency interaction in bi-frequency 

space.      

In this paper, different signal processing techniques 

based on vibration bispectral analysis are used to assess 

health conditions of rotating-components in the tail rotor 

drive train of an AH-64D helicopter. First, different drive-

shaft faulted conditions, namely misalignment and 

imbalance, are investigated using cross-bispectral analysis. 

Two vibration signals are simultaneously collected from the 

bearings that support the shafts, then used to estimate the 

cross-bispectrum and compare it to the classical cross-power 

spectrum in each case. Condition indicators (CIs) based on 

magnitude of the cross-bispectrum show higher sensitivity to 

faults in the studied shaft cases than currently used CIs 

based on the power spectrum. Also, phase values of the CIs 

show wider margins between different studied shaft cases, 

which makes it easy to distinguish each case. Another useful 

application of the bispectrum is presented to study faulted 

inner-race of a hanger bearing in the presence of shaft 

misalignment and imbalance. Analysis of vibration signals 

from the faulted bearing shows that shaft harmonics 

dominate the power spectra, making it hard to detect the 

bearing’s fault. Also, unexpected frequencies appear in the 

vibration spectrum which cannot be explained using 

conventional power spectral analysis. However, using the 

auto-bispectral analysis demonstrates better capability in 

both detecting the fault frequency and relating frequencies in 

the power spectrum to their physical root causes. 

The paper is organized as follows: First, the background 

of bispectral analysis is sketched. Then, the experimental 

test stand used to conduct this study is described. Two case 

studies are presented to demonstrate the applications of 

bispectrum. These are followed by some concluding 

remarks.  

BISPECTRUM BACKGROUND 

Vibration signals collected from rotating mechanical 

components can be considered as realizations of random 

processes. Just as random variables are characterized by 

certain expected values (or, moments), such as mean and 

variance, random processes are also characterized by their 

mean value, correlation function, and various higher-order 

correlation functions. Alternatively, random processes may 

be characterized by the Fourier transforms of the various 

order correlation functions  [11]. Of particular interest are the 

correlation and bicorrelation functions and their Fourier 

transform, as will be discussed in the following subsections. 

Auto- and Cross-Power Spectra 

For a zero-mean stationary vibration signal x(t), the 

autocorrelation function Rxx(τ) and the auto-power spectrum 

PXX(f) are Fourier transform pairs according to the Wiener-

Khinchin theorem [10],  and can be estimated by equations 

(1) and (2) as follows: 

*( ) { ( ) ( )}xxR E x t x t    (1) 

2*( ) { ( ) ( )} { ( ) }XXP f E X f X f E X f   (2) 

where E{.} denotes a statistical expected value operator, 

X(f) is the Fourier transform of x(t), and superscript asterisk ∗ 

denotes a complex conjugate.   

Auto-power spectrum, PXX(f), is one of the most 

commonly used tools in vibration spectral analysis [8]. It 

describes how the mean square power of the vibration signal 

is distributed over single-frequency space. When two 

vibration signals are collected simultaneously, cross-

correlation,  Rxy(τ),  is a useful function which investigates 

the linear relationship between the two signals  x(t) and y(t), 

as given in equation (3). The Fourier transform of the cross-

correlation function is the cross-power spectrum, CXY(f), as 

given in equation (4).  

*( ) { ( ) ( )}xyR E x t y t    (3) 

*( ) { ( ) ( )} ( ) XYj

XY xyC f E X f Y f C f e    (4) 

Auto- and Cross-Bispectra 

Auto-bispectrum, SXXX(f1,f2), is the Fourier transform of 

the second-order correlation function Rxxx(τ1, τ2), as given in 

(5) and (6), and it describes second-order statistical 

dependence between spectral components of signal x(t) [11]. 

*

1 2 1 2( , ) { ( ) ( ) ( )}xxxR E x t x t x t       (5) 

*

1 2 1 2 1 2( , ) { ( ) ( ) ( )}XXXS f f E X f X f X f f   (6) 

The advantage of bispectral over power spectral 

analysis is its ability to characterize quadratic nonlinearities 

in monitored systems. Due to quadratic nonlinearities, 

various spectral components of the vibration signal interact 

with one another producing cross-term (second-order term), 

as indicated in the left side of equation (7). This interaction 

results in new combinations of frequencies at both the sum 

and the difference values of the interacting frequencies, as 

indicated in the right side of equation (7). An important 

signature for detecting nonlinearity is based on the 

knowledge that phase coherence (phase coupling) exists 

between the primary interacting frequencies and the resultant 

new sum and difference frequencies. The bispectrum 

describes this correlation between the three waves (the 

interacting frequencies i) f1 and ii) f2, and the result iii) 

(f1+f2) of nonlinear process) in two-dimensional frequency 

space (f1-f2).  The definition of the bispectrum in (6) implies 

that SXXX(f1,f2) will be zero unless phase coherence is present 

between the three frequency components  f1, f2, and f1 + f2. 

1 1 2 2

1 2 1 2

1 2 1 2

cos(2 ) cos(2 )

1
[cos(2 ( ) ( ))

2

cos(2 ( ) ( ))]

f t f t

f f t

f f t

   

  

  

  

   

   

 (7) 
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Similarly, the cross-bispectrum CXXY(f1,f2) is the Fourier 

transform of the cross-bicorrelation function Rxxy(τ1,τ2) as 

given in (8) and (9) [11]:   

*

1 2 1 2( , ) { ( ) ( ) ( )}xxyR E x t x t y t       (8) 

*

1 2 1 2 1 2( , ) { ( ) ( ) ( )}XXYC f f E X f X f Y f f   (9) 

The cross-bispectrum given in (9) investigates the 

nonlinear coupling between any two frequency components 

f1 and f2 in signal X(f) that interact, due to quadratic 

nonlinearity, to produce a third frequency f1+f2 at another 

signal Y(f).  

Both auto- and cross-bispectrum will be evaluated 

digitally. Sampling theory implies that f1, f2, and f3=f1+f2 

must be less than or equal to (fS /2), where  fS is the sampling 

frequency. Due to sampling theory limitations in addition to 

Fourier transform symmetry properties, cross-bispectrum, 

CXXY(f1,f2), is usually plotted in the sum-frequency region 

denoted by “Σ” and the difference-frequency region “∆”, as 

shown in Figure 1, while auto- bispectrum, SXXX(f1,f2), is 

usually plotted only in the sum-frequency region “∆” [11]. 

 

TRDT TEST STAND AT USC 

Since 1998, the University of South Carolina (USC) has 

been working closely with the South Carolina Army 

National Guard on a number of projects directed at reducing 

the Army’s aviation costs and at increasing its operational 

readiness through the implementation of CBM [5]-[6]. These 

efforts expanded into a fully-matured CBM research center 

which hosts several aircraft component test stands in support 

of current US Army CBM objectives [2].  Within the USC 

test facility is an AH-64D (Apache helicopter) tail rotor 

drive train (TRDT) test stand for on-site data collection and 

analysis, as shown in Figure 2-(b).  

The TRDT test stand emulates the complete tail rotor 

drive train from the main transmission tail rotor power 

takeoff to the tail rotor swashplate assembly, as shown in 

Figure 2-(a). This multi-shaft drive train consists of four 

shafts. Three of these shafts, denoted as shafts #3, #4 and # 

5, lead from the tail rotor power take off point to the 

intermediate gearbox (IGB). These shafts are supported by 

two hanger bearings denoted as forward (FHB) and aft 

(AHB), and flexible couplings at shaft joining points. The 

fourth shaft is installed on the vertical stabilizer between the 

IGB and the tail rotor gearbox (TRGB).  

All drive train parts on the test stand are actual aircraft 

hardware. The prime mover for the drive train is an 800hp 

AC induction motor controlled by a variable-frequency 

drive. An absorption motor of matching rating, controlled by 

a separate variable-frequency drive, is used to simulate the 

torque loads that would be applied by the tail rotor. The 

input and the output motors work in dynamometric 

configuration to save energy. 

 

The structure, instrumentation, data acquisition systems, 

and supporting hardware are in accordance with military 

standards. The signals being collected during the operational 

run of the stand include vibration data measured by 

accelerometers, temperature measured via thermocouples, 

and speed and torque measurements. The measurement 

 
(a) TRDT on the AH-64D helicopter 

 

 
(b) TRDT test stand at USC 

Figure 2: Tail Rotor Drive Train (TRDT)  

 
 
Figure 1: Region of computation of the bispectrum  
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devices are placed at the FHB and AHB hanger bearings and 

the two gearboxes as shown in Figure 2-(b).  

 

DRIVE-SHAFT CASE STUDY 

In this section, we utilize the cross-bispectrum as a tool 

to investigate and model quadratic nonlinear relationships 

between two vibration signals simultaneously collected at 

the FHB and AHB positions in an AH-64D helicopter tail 

rotor drive train.  

Experiment Setup and Vibration Data Description 

The data used in this study were collected from four 

experiment runs testing different shaft alignment and 

balance conditions. In order to keep data organized, a 

naming convention, summarized in Table 1, was adopted. 

The original configuration of the test stand used balanced 

drive-shafts, straightly aligned, as a baseline for normal 

operations (case “00373” in Table 1). The case of aligned 

but unbalanced shafts (“10373” in Table 1) is simulated with 

drive shaft #4 unbalanced by 0.135 oz-in, and drive shaft #5 

unbalanced by 0.190 oz-in. Angular misalignment between 

shafts (case “20373” in Table 1) was tested with a 1.3 

misalignment between the #3 and the #4 drive shafts and a 

similar misalignment between the #4 and the #5 drive shafts. 

A combination of the last two cases, imbalance and 

misalignment, was also tested (case “30373” in Table 1). 

Table 1. Vibration Data Set and Test Numbers 

Shaft Setting Test Number 

Baseline (Aligned-Balanced) (BL)  00373 

Aligned-Unbalanced (UB) 10373 

Misaligned-Balanced (MA) 20373 

Misaligned-Unbalanced (MA-UB) 30373 

During each thirty-minute run, accelerometer data were 

collected simultaneously from the FHB and AHB once every 

two minutes, making total of 15 data samples. Each data 

sample consists of 65536 data points collected at a sampling 

rate of 48 kHz (fS), which results in a data collection time of 

approximately 1.31 seconds per acquisition. Vibration 

signals are collected during operation of the test stand at a 

constant rotational speed of 4863 rpm (81.05 Hz), with a 

simulation of the output torque at 111 ft-lb. Rotational speed 

is the speed of the input shafts and hanger bearings. Output 

torque is given by the torque at the output of the tail rotor 

gearbox simulating rotor operation while the torque applied 

to the input shafts is equal to 32.35 ft-lb. 

Results and Discussion  

Vibration signals at the FHB and AHB in Figure 2 are 

used as x(t) and y(t) in equations (4) and (9). In the following 

discussion, for easier notation of frequency values, we will 

use “1R, 2R, 3R, etc.” to denote “first, second, third, etc.” 

harmonics of the shaft rotating frequency (1R = 81.05Hz). 

Figure 3 shows the magnitude plot of the cross-power 

spectrum for all the studied shaft settings. Although we 

expect to see very low vibration power in the case of the 

baseline, Figure 3(a) shows a high spectral peak at f=3R that 

dominates the vibration spectrum in this case.  High 

vibration power at this frequency can be caused by 

oscillations due to unsymmetrical loading on one end of the 

drive shafts as torque transferred to the shafts through the 

IGB from the tail rotor. A high spectral peak at frequency 

3R continues to dominate all the studied faulted cases, as 

shown in Figure 3(b-d). 

 

  
(a) Baseline case (00373) 

 
(b) Unbalanced case (10373) 

 
(c) Misaligned case (20373) 

 
(d) Misaligned-Unbalanced case (30373) 

Figure 3. Cross-power spectrum between FHB and AHB 

vibration signals under different shaft settings 
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Current practice in monitoring rotating shaft conditions 

involves using the vibration magnitude at the spectral peaks 

corresponding to the first three rotating shaft harmonics (1R, 

2R, and 3R) as shaft’s condition indicators [12], [13]. In 

order to calculate those condition indicators, either an auto-

power spectrum is averaged between the two vibration 

signals at one particular frequency (for example, 2R) or a 

cross-power spectrum between the two vibration signals is 

calculated at that frequency. Comparison with the baseline is 

usually done on a logarithmic amplitude scale, where 

increases of 6-8 dB (double the baseline values) are 

considered to be significant and changes greater than 20 dB 

(ten times the baseline values) are considered serious [14]. 

Therefore, we will focus our attention on comparing the 

experimental data using 1R, 2R, and 3R condition indicators 

calculated from the cross-power spectrum between the FHB 

and AHB vibrations. 

Table 2 summarizes the results of the spectral peak 

comparison of the three faulted cases (UB, MA, and MA-

UB) against the baseline case (BL). Values of spectral peaks 

at the first three harmonics of the shaft speed (1R, 2R, and 

3R) are extracted from the cross-power spectral plots in 

Figure 3(b-d), and compared with their counterparts from the 

baseline case (Figure 3(a)) in logarithmic scale. Results of 

the spectral peak comparison in Table 2 show that vibration 

power at shaft rotation frequency (f=1R) exceeds the 6 dB 

threshold in all the faulted cases, and hence is considered a 

good indicator of the faults. However, using only the 

magnitude of 1R condition indicator does not give much 

information to distinguish between different studied faults.  

Table 2. Spectral Peak Comparison with Baseline  

(dB) 

f UB(10373) MA(20373) MA-UB(30373) 

1R 16.22 6.31 11.09 

2R 3.51 4.58 9.12 

3R -6.08 -20.89 -19.95 

In order to gain more diagnostic capabilities, phase 

information of the cross-power spectral peaks can be 

employed. Phase differences between spectral peaks of 

faulted cases compared to the baseline are listed in Table 3 

for the first three harmonics of the rotating shaft frequency 

(1R, 2R, and 3R). For the 1R frequency, whose magnitude is 

used as a fault indicator, narrow phase margins can be 

observed between different cases, as shown in Table 3.  

Table 3. Cross-Power Phase Comparison with 

Baseline (Degrees) 

f UB(10373) MA(20373) UB-MA(30373) 

IR -35.05 -53.41 -39.97 

2R -19.04 22.69 1.93 

3R 7.85 -69.48 -53.34 

More information can be extracted from the same 

vibration data by extending the analysis to investigate the 

quadratic-nonlinear behavior of the drive shafts using the 

cross-bispectrum. Magnitude of the cross-bispectrum is 

plotted for the same data set studied before, as shown in 

Figures 4. The baseline case (aligned-balanced), shown in 

Figure 4(a), has the least quadratic nonlinear frequency 

interaction of all cases. The highest bispectral peak in the 

baseline case is found at the coordinate point (3R,3R) whose 

magnitude is equal to 0.17 g
3
.  For faulted shaft cases, 

increased frequency-interaction takes place along f1=1R, 2R, 

and 3R frequency axes, as can be observed in Figure 4(b-d). 

One interesting observation is the high bispectral peaks at 

the frequency coordinate points of (1R,1R), (2R,1R), and 

(3R,1R) in all the faulted cases compared to the baseline. 

Interpretation of these frequency coupling points suggests 

that quadratic nonlinearity of the faulted drive shafts 

stimulates interaction between time-varying forces at the 

shaft rotation frequency, 1R, and its harmonics.  

Bispectral peaks at the three frequency coordinate 

points mentioned above are used to compare the three 

faulted cases with the baseline case, as summarized in Table 

4. Bispectral peaks at (1R,1R), (2R,1R), and (3R,1R) are 

extracted from each faulted case and compared to their 

counterparts from the baseline in logarithmic scale. Results 

of the bispectral peak comparison in Table 4 show the 

sensitivity of all the selected bispectral condition indicators 

to any abnormalities in the drive shafts. Values of those 

bispectral peaks increase more than 6dB in all the faulted 

cases compared to the baseline.  

 Table 4. Bispectral Peak Comparison with Baseline 

 (dB) 

(f1,f2) UB(10373) MA(20373) MA-UB(30373) 

(1R,1R) 16.35 12.92 16.89 

(2R, 1R)  10.64 9.44 8.25 

(3R,1R) 16.33 8.05 11.93 

Again, phase information of the cross-bispectral peaks 

can be used to gain more diagnostic capabilities.  Phase 

differences are calculated between the bispectral peaks in 

faulted cases and their counterparts in the baseline, as listed 

in Table 5. Wider phase margins can be observed between 

different faulted cases. These wider margins relax the 

requirement to set threshold values and make it easy to 

distinguish between different cases.  

Table 5. Cross-Bispectrum Phase Comparison with 

Baseline (Degrees) 

(f1,f2) UB(10373) MA(20373) MA-UB(30373) 

(1R,1R) -53.53 60.17 -69.60 

(2R, 1R)  1.12 -94.16 0.18 

(3R,1R) -117.99 -302.09 71.30 
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(a) 00373 Baseline case 

 

(b) 10373 Unbalanced case 

 

  

(c) 20373 Misaligned case 
 

 

(d) 30373 Unbalanced-Misaligned case 

 

Figure 4: Cross-bispectrum between FHB and AHB vibration signals under different shaft settings 

 

BEARING CASE STUDY 

Most of the conventional fault analysis techniques 

assume that a defect occurs in a rotating element separately, 

that we can identify a fault by the characterizing frequency 

of that component. For example, ball pass frequency inner-

race (BPFI) is used to detect faults in the inner-race of 

bearings [15]. However, in the presence of drive shaft faults, 

shaft harmonics dominate the power spectra of the vibration 

signals collected form the faulted hanger bearing, making it 

hard to detect bearing faults. Also, spectral interaction 

between different fault frequencies leads to the appearance 

of unexpected frequencies in the vibration spectrum which 

cannot be explained using conventional power spectral 

analysis.  

In this section, the auto-bispectrum is used to analyze 

vibration data collected from a faulted hanger bearing with 

typically misaligned and unbalanced shafts.  

Experiment Setup and Vibration Data Description 

A seeded hanger bearing fault experiment was designed 

to test multi-faulted drive train components. The FHB was 

machined to replicate a bearing with a spalled inner-race, as 

shown in Figure 5. The faulted hanger bearing was tested 

with 1.3° misalignment between drive shafts #3 and #4, 1.3° 

misalignment between drive shafts #4 and #5, and drive 

shafts #3, #4, and #5 unbalanced by 0.14 oz-in, 0.135 oz-in, 

and 0.19 oz-in, respectively. 
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Figure 5: Faulted FHB: (a) assembled bearing in the drive 

train, (b) schematic of assembly components, and 

(c) zoom-in view of the spalled inner-race fault 
 

Three holes were milled into the inner-race with a ball 

mill and were machined to the specifications summarized in 

Table 6. Vibration data were collected every two minutes 

over a 50 minutes run. Each acquisition consisted of 65536 

data points collected at a sampling rate of 48 kHz (fS). 

Vibration signals were collected during operation of the test 

stand at a constant rotational speed of 4863 rpm (81.05 Hz) 

from the prime mover, and output torque at the tail rotor 

equals to 371 ft-lb.   

Table 6. Spalled Inner-Race Specifications (inch) 

Spall Diameter Depth 

Distance 

from left 

shoulder 

Distance 

from right 

shoulder 

#1 0.031 0.017 0.1400 0.2538 

#2 0.031 0.016 0.1956 0.1985 

#3 0.031 0.017 0.2567 0.1376 

Results and Discussion  

Magnitude of the auto-power spectrum for vibration 

data collected form the spalled inner-race FHB is shown in 

Figure 6. Due to the presence of the drive shafts 

misalignment and imbalance, high magnitudes of the 

vibration exist at the 80.57Hz, 162.5Hz, and 243.2Hz. These 

frequencies match 1R , 2R, and 3R, and indicate drive shaft 

faults as discussed in the previous section. Due to the 

presence of the fault in the inner-race of the bearing, one 

should also expect to see the ball pass inner-race frequency 

(BPFI) that characterizes the faulted hanger bearing under 

test (441Hz as reported by the Aviation Engineering 

Directorate (AED)). However, vibration power at PBFI has 

very low magnitude, making it very hard to detect, as shown 

in Figure 6. The highest non-shaft frequency in this 

spectrum is at 684.1Hz, which does not match any frequency 

reported by AED for the tail rotor drive train components.  

 

Figure 6: Power spectrum of the spalled inner-race FHB 

with misaligned-unbalanced shafts 

Auto-bispectrum is utilized to investigate the same 

vibration data from the faulted inner-race bearing, as shown 

in Figure 7. It can be seen that a number of quadratic 

frequency interactions exist along the first three shaft 

rotating harmonics (f1 = 80.57Hz, 161.1Hz, and 243.2Hz). 

These shaft harmonic patterns have been used before to 

describe shaft abnormalities. Among frequency interaction 

pairs, the high bispectral peak at the (442.4Hz, 243.2Hz) 

coordinate point has very interesting interpretation. First, 

physical interpretation of this bispectral peak suggests that 

the 442.4Hz frequency nonlinearly interacts with third 

harmonic of the shaft, 243.2Hz, to produce the sum value, 

684.6Hz. The existence of the 685.6Hz frequency value in 

the power spectrum of the bearing’s vibration could not be 

explained using information from the power spectrum alone. 

Also, 442.4Hz is equal to the BPFI, which implies that a 

fault exists in the inner race of the hanger bearing. 

 

Figure 7: Aut-bispectrum of the spalled inner-race FHB 

with misaligned-unbalanced shafts 

 

(a) (b) 

(c) 
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CONCLUSION 

In this paper, bispectral analysis has been used to 

investigate and understand quadratic nonlinear wave-wave 

interaction in vibration signals in order to assess health 

conditions of rotating components in the AH-64D helicopter 

tail rotor drive train. First, cross-bispectrum has been 

employed to study quadratic coupling in faulted drive shafts. 

Compared with conventional power spectral analysis, 

condition indicators based on magnitude of the cross-

bispectrum have shown higher sensitivity to abnormalities in 

the drive shafts. Moreover, phase information from the 

bispectrum has shown wider phase margins among different 

studied shaft cases which makes it easy to distinguish 

between different shaft conditions.  

Auto-bispectrum has also been used to study vibration 

signals from a faulted hanger bearing under simultaneous 

drive shaft misalignment and imbalance. In the presence of 

the drive-shaft faults, shaft harmonics have dominated the 

power spectra of the vibration signals collected from the 

faulted hanger-bearing, making it hard to detect the 

bearing’s fault. Also, unexpected frequencies have appeared 

in the vibration spectra which could not be explained using 

conventional power spectral analysis. However, bispectral 

analysis has not only detected the bearing’s fault, but also 

has shown better ability to relate all frequencies in the power 

spectrum to their root causes and successfully link the signal 

processing to the physics of the underlying faults. 

Future research in this area includes studying the effect 

of loading by the trail-rotor blades on the proposed metrics, 

and extending the application of bispectral analysis to study 

more faults and failure modes in aircraft. The unique 

quadratic nonlinearity signature of each fault can be used to 

design more accurate and reliable diagnostic algorithms for 

condition-based maintenance (CBM) practice. 
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